Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.
نویسندگان
چکیده
Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from +/-5 to +/-30 degrees ). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca(2+) with Ba(2+) in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca(2+)-dependent processes.
منابع مشابه
Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
Intersegmental coordination during locomotion in legged animals arises from mechanical couplings and the exchange of neuronal information between legs. Here, the information flow from a single leg sense organ of the stick insect Cuniculina impigra onto motoneurons and interneurons of other legs was investigated. The femoral chordotonal organ (fCO) of the right middle leg, which measures posture...
متن کاملThe Physiology of Sensory Cells in the Ventral Scoloparium of the Stick Insect Femoral Chordotonal Organ
The leg joints of invertebrates are governed by neural control loops that control their position and velocity during movements (for reviews, see Bassler, 1983, 1993). These neural control loops rely on sensory feedback about the position and velocity of the controlled leg joint. In invertebrates, this sensory feedback is provided by external (e.g. hair fields, hair rows) and/or internal sense o...
متن کاملRole of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
Interjoint reflex function of the insect leg contributes to postural control at rest or to movement control during locomotor movements. In the stick insect (Carausius morosus), we investigated the role that sensory signals from the femoral chordotonal organ (fCO), the transducer of the femur-tibia (FT) joint, play in patterning motoneuronal activity in the adjacent coxa-trochanteral (CT) joint ...
متن کاملMultimodal convergence of presynaptic afferent inhibition in insect proprioceptors.
In the leg motor system of insects, several proprioceptive sense organs provide the CNS with information about posture and movement. Within one sensory organ, presynaptic inhibition shapes the inflow of sensory information to the CNS. We show here that also different proprioceptive sense organs can exert a presynaptic inhibition on each other. The afferents of one leg proprioceptor in the stick...
متن کاملJN-00625-2006.R1, accepted Load signals assist the generation of movement dependent reflex reversal in the femur-tibia joint of stick insects
Reinforcement of movement is an important mechanism by which sensory feedback contributes to motor control for walking. We investigate how sensory signals from movement and load sensors interact in controlling the motor output of the stick insect femur-tibia (FT-) joint. In stick insects, flexion signals from the femoral chordotonal organ (fCO) at the FTjoint and load signals from the femoral c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 5 شماره
صفحات -
تاریخ انتشار 2002